Operational Calculus for the General Fractional Derivative and Its Applications
نویسندگان
چکیده
In this paper, we first address the general fractional integrals and derivatives with Sonine kernels that possess integrable singularities of power function type at point zero. Both particular cases compositions these operators are discussed. Then proceed a construction an operational calculus Mikusi\'nski for kernels. This is applied analytical treatment some initial value problems differential equations derivatives. The solutions expressed in form convolution series generalize exponential Mittag-Leffler functions.
منابع مشابه
The operational matrix of fractional derivative of the fractional-order Chebyshev functions and its applications
In this paper, we introduce a family of fractional-order Chebyshev functions based on the classical Chebyshev polynomials. We calculate and derive the operational matrix of derivative of fractional order $gamma$ in the Caputo sense using the fractional-order Chebyshev functions. This matrix yields to low computational cost of numerical solution of fractional order differential equations to the ...
متن کاملthe operational matrix of fractional derivative of the fractional-order chebyshev functions and its applications
in this paper, we introduce a family of fractional-order chebyshev functions based on the classical chebyshev polynomials. we calculate and derive the operational matrix of derivative of fractional order $gamma$ in the caputo sense using the fractional-order chebyshev functions. this matrix yields to low computational cost of numerical solution of fractional order differential equations to the ...
متن کاملThe operational matrix of fractional derivative of the fractional- order Chebyshev functions and its applications
In this paper, we introduce a family of fractional-order Chebyshev functions based on the classical Chebyshev polynomials. We calculate and derive the operational matrix of derivative of fractional order γ in the Caputo sense using the fractional-order Chebyshev functions. This matrix yields to low computational cost of numerical solution of fractional order differential equations to the soluti...
متن کاملFractional calculus and its applications.
Fractional calculus was formulated in 1695, shortly after the development of classical calculus. The earliest systematic studies were attributed to Liouville, Riemann, Leibniz, etc. [1,2]. For a long time, fractional calculus has been regarded as a pure mathematical realm without real applications. But, in recent decades, such a state of affairs has been changed. It has been found that fraction...
متن کاملKronecker operational matrices for fractional calculus and some applications
The problems of systems identification, analysis and optimal control have been recently studied using orthogonal functions. The specific orthogonal functions used up to now are the Walsh, the block-pulse, the Laguerre, the Legendre, Haar and many other functions. In the present paper, several operational matrices for integration and differentiation are studied. we introduce the Kronecker convol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fractional Calculus and Applied Analysis
سال: 2021
ISSN: ['1311-0454', '1314-2224']
DOI: https://doi.org/10.1515/fca-2021-0016